
10417/10617	
Intermediate	Deep	Learning:		

Fall2019	
Russ	Salakhutdinov	

Machine Learning Department
rsalakhu@cs.cmu.edu

https://deeplearning-cmu-10417.github.io/

Convolutional Neural
Networks I

Used Resources

•  Some tutorial slides were borrowed from Rob Fergus’ CIFAR
tutorial on ConvNets:
 https://sites.google.com/site/deeplearningsummerschool2016/speakers

•  Disclaimer: Much of the material in this lecture was borrowed from
Hugo Larochelle’s class on Neural Networks:
https://sites.google.com/site/deeplearningsummerschool2016/

•  Some slides were borrowed from Marc'Aurelio Ranzato’s
CVPR 2014 tutorial on Convolutional Nets
https://sites.google.com/site/lsvrtutorialcvpr14/home/deeplearning

Computer Vision
•  Design algorithms that can process visual data to
accomplish a given task:

Ø  For example, object recognition: Given an input image, identify

which object it contains

Computer Vision
•  Our goal is to design neural networks that are specifically
adapted for such problems

Ø  Must deal with very high-dimensional inputs: 150 x 150 pixels =

22500 inputs, or 3 x 22500 if RGB pixels

Ø  Can exploit the 2D topology of pixels (or 3D for video data)

Ø  Can build in invariance to certain variations: translation,

illumination, etc.

•  Convolutional networks leverage these ideas

Ø  Local connectivity

Ø  Parameter sharing

Ø  Convolution

Ø  Pooling / subsampling hidden units

Local Connectivity
•  Use a local connectivity of hidden units

Ø  Each hidden unit is connected only to a
sub-region (patch) of the input image

Ø  It is connected to all channels: 1 if
grayscale, 3 (R, G, B) if color image

•  Why local connectivity?

Ø  Fully connected layer has a lot of
parameters to fit, requires a lot of data

Ø  Spatial correlation is local

Local Connectivity
•  Units are connected to all channels:

Ø  1 channel if grayscale image,
Ø  3 channels (R, G, B) if color image

Local Connectivity
•  Example: 200x200 image, 40K hidden units, ~2B parameters!

Ø  Spatial correlation is local
Ø  Too many parameters, will require a

lot of training data!

Local Connectivity
•  Example: 200x200 image, 40K hidden units, filter size 10x10,
4M parameters!

Ø  This parameterization is good
when input image is registered

Computer Vision
•  Our goal is to design neural networks that are specifically
adapted for such problems

Ø  Must deal with very high-dimensional inputs: 150 x 150 pixels =

22500 inputs, or 3 x 22500 if RGB pixels

Ø  Can exploit the 2D topology of pixels (or 3D for video data)

Ø  Can build in invariance to certain variations: translation,

illumination, etc.

•  Convolutional networks leverage these ideas

Ø  Local connectivity

Ø  Parameter sharing

Ø  Convolution

Ø  Pooling / subsampling hidden units

Parameter Sharing
•  Share matrix of parameters across some units

Ø  Units that are organized into the ‘feature map” share parameters

Ø  Hidden units within a feature map cover different positions in the
image

Wij	is	the	matrix	connecting	
the	ith input	channel	with	the	
jth feature	map	

same color
=

same matrix of
connection	

Parameter Sharing
•  Why parameter sharing?

Ø  Reduces even more the number of parameters

Ø  Will extract the same features at every position (features are
‘‘equivariant’’)

Wij	is	the	matrix	connecting	
the	ith input	channel	with	the	
jth feature	map	

same color
=

same matrix of
connection	

Parameter Sharing
•  Share matrix of parameters across certain units

Ø  Convolutions with certain kernels

Computer Vision
•  Our goal is to design neural networks that are specifically
adapted for such problems

Ø  Must deal with very high-dimensional inputs: 150 x 150 pixels =

22500 inputs, or 3 x 22500 if RGB pixels

Ø  Can exploit the 2D topology of pixels (or 3D for video data)

Ø  Can build in invariance to certain variations: translation,

illumination, etc.

•  Convolutional networks leverage these ideas

Ø  Local connectivity

Ø  Parameter sharing

Ø  Convolution

Ø  Pooling / subsampling hidden units

Parameter Sharing
•  Each feature map forms a 2D grid of features

Ø  can be computed with a discrete convolution () of a kernel
matrix kij which is the hidden weights matrix Wij with its rows and
columns flipped

Computer vision

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 8, 2012

Abstract

Math for my slides “Computer vision”.

• H X ⇤

1

Filter Bank Layer - FCSG: the input of a filter bank
layer is a 3D array with n1 2D feature maps of size n2×n3.
Each component is denoted xijk, and each feature map is
denoted xi. The output is also a 3D array, y composed of
m1 feature maps of size m2 ×m3. A filter in the filter bank
kij has size l1 × l2 and connects input feature map xi to
output feature map yj . The module computes:

yj = gj tanh(
∑

i

kij ∗ xi) (1)

where tanh is the hyperbolic tangent non-linearity, ∗ is the
2D discrete convolution operator and gj is a trainable scalar
coefficient. By taking into account the borders effect, we
have m1 = n1− l1 +1, and m2 = n2− l2 +1. This layer is
denoted by FCSG because it is composed of a set of convo-
lution filters (C), a sigmoid/tanh non-linearity (S), and gain
coefficients (G). In the following, superscripts are used to
denote the size of the filters. For instance, a filter bank layer
with 64 filters of size 9x9, is denoted as: 64F 9×9

CSG.
Rectification Layer - Rabs: This module simply applies
the absolute value function to all the components of its in-
put: yijk = |xijk|. Several rectifying non-linearities were
tried, including the positive part, and produced similar re-
sults.
Local Contrast Normalization Layer - N : This module
performs local subtractive and divisive normalizations, en-
forcing a sort of local competition between adjacent fea-
tures in a feature map, and between features at the same
spatial location in different feature maps. The subtrac-
tive normalization operation for a given site xijk com-
putes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q, where wpq is

a Gaussian weighting window (of size 9x9 in our exper-
iments) normalized so that

∑
ipq wpq = 1. The divisive

normalization computes yijk = vijk/max(c,σjk) where
σjk = (

∑
ipq wpq.v2

i,j+p,k+q)
1/2. For each sample, the

constant c is set to the mean(σjk) in the experiments. The
denominator is the weighted standard deviation of all fea-
tures over a spatial neighborhood. The local contrast nor-
malization layer is inspired by computational neuroscience
models [24, 20].
Average Pooling and Subsampling Layer - PA: The pur-
pose of this layer is to build robustness to small distor-
tions, playing the same role as the complex cells in mod-
els of visual perception. Each output value is yijk =∑

pq wpq.xi,j+p,k+q, where wpq is a uniform weighting
window (“boxcar filter”). Each output feature map is then
subsampled spatially by a factor S horizontally and verti-
cally. In this work, we do not consider pooling over fea-
ture types, but only over the spatial dimensions. Therefore,
the numbers of input and output feature maps are identical,
while the spatial resolution is decreased. Disregarding the
border effects in the boxcar averaging, the spatial resolution
is decreased by the down-sampling ratio S in both direc-
tions, denoted by a superscript, so that, an average pooling

Figure 1. A example of feature extraction stage of the type FCSG−

Rabs − N − PA. An input image (or a feature map) is passed
through a non-linear filterbank, followed by rectification, local

contrast normalization and spatial pooling/sub-sampling.

layer with 4x4 down-sampling is denoted: P 4×4
A .

Max-Pooling and Subsampling Layer - PM : building lo-
cal invariance to shift can be performed with any symmetric
pooling operation. The max-pooling module is similar to
the average pooling, except that the average operation is re-
placed by a max operation. In our experiments, the pooling
windows were non-overlapping. A max-pooling layer with
4x4 down-sampling is denoted P 4×4

M .

2.1. Combining Modules into a Hierarchy
Different architectures can be produced by cascading the

above-mentioned modules in various ways. An architec-
ture is composed of one or two stages of feature extraction,
each of which is formed by cascading a filtering layer with
different combinations of rectification, normalization, and
pooling. Recognition architectures are composed of one or
two such stages, followed by a classifier, generally a multi-
nomial logistic regression.
FCSG − PA This is the basic building block of tra-
ditional convolutional networks, alternating tanh-squashed
filter banks with average down-sampling layers [14, 10].
A complete convolutional network would have several se-
quences of “FCSG - PA” followed by by a linear classifier.
FCSG − Rabs − PA The tanh-squashed filter bank is
followed by an absolute value non-linearity, and by an av-
erage down-sampling layer.
FCSG − Rabs − N − PA The tanh-squashed filter bank
is followed by an absolute value non-linearity, by a lo-
cal contrast normalization layer and by an average down-
sampling layer.
FCSG − PM This is also a typical building block of con-
volutional networks, as well as the basis of the HMAX and
other architectures [28, 25], which alternate tanh-squashed
filter banks with max-pooling layers.

3. Training Protocol
Given a particular architecture, a number of training pro-

tocols have been considered and tested. Each protocol is
identified by a letter R,U,R+, or U+. A single letter (e.g.
R) indicates an architecture with a single stage of feature
extraction, followed by a classifier, while a double letter
(e.g. RR) indicates an architecture with two stages of fea-
ture extraction followed by a classifier:
Random Features and Supervised Classifier - R and
RR: The filters in the feature extraction stages are set to
random values and kept fixed (no feature learning takes
place), and the classifier stage is trained in supervised mode.

Filter Bank Layer - FCSG: the input of a filter bank
layer is a 3D array with n1 2D feature maps of size n2×n3.
Each component is denoted xijk, and each feature map is
denoted xi. The output is also a 3D array, y composed of
m1 feature maps of size m2 ×m3. A filter in the filter bank
kij has size l1 × l2 and connects input feature map xi to
output feature map yj . The module computes:

yj = gj tanh(
∑

i

kij ∗ xi) (1)

where tanh is the hyperbolic tangent non-linearity, ∗ is the
2D discrete convolution operator and gj is a trainable scalar
coefficient. By taking into account the borders effect, we
have m1 = n1− l1 +1, and m2 = n2− l2 +1. This layer is
denoted by FCSG because it is composed of a set of convo-
lution filters (C), a sigmoid/tanh non-linearity (S), and gain
coefficients (G). In the following, superscripts are used to
denote the size of the filters. For instance, a filter bank layer
with 64 filters of size 9x9, is denoted as: 64F 9×9

CSG.
Rectification Layer - Rabs: This module simply applies
the absolute value function to all the components of its in-
put: yijk = |xijk|. Several rectifying non-linearities were
tried, including the positive part, and produced similar re-
sults.
Local Contrast Normalization Layer - N : This module
performs local subtractive and divisive normalizations, en-
forcing a sort of local competition between adjacent fea-
tures in a feature map, and between features at the same
spatial location in different feature maps. The subtrac-
tive normalization operation for a given site xijk com-
putes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q, where wpq is

a Gaussian weighting window (of size 9x9 in our exper-
iments) normalized so that

∑
ipq wpq = 1. The divisive

normalization computes yijk = vijk/max(c,σjk) where
σjk = (

∑
ipq wpq.v2

i,j+p,k+q)
1/2. For each sample, the

constant c is set to the mean(σjk) in the experiments. The
denominator is the weighted standard deviation of all fea-
tures over a spatial neighborhood. The local contrast nor-
malization layer is inspired by computational neuroscience
models [24, 20].
Average Pooling and Subsampling Layer - PA: The pur-
pose of this layer is to build robustness to small distor-
tions, playing the same role as the complex cells in mod-
els of visual perception. Each output value is yijk =∑

pq wpq.xi,j+p,k+q, where wpq is a uniform weighting
window (“boxcar filter”). Each output feature map is then
subsampled spatially by a factor S horizontally and verti-
cally. In this work, we do not consider pooling over fea-
ture types, but only over the spatial dimensions. Therefore,
the numbers of input and output feature maps are identical,
while the spatial resolution is decreased. Disregarding the
border effects in the boxcar averaging, the spatial resolution
is decreased by the down-sampling ratio S in both direc-
tions, denoted by a superscript, so that, an average pooling

Figure 1. A example of feature extraction stage of the type FCSG−

Rabs − N − PA. An input image (or a feature map) is passed
through a non-linear filterbank, followed by rectification, local

contrast normalization and spatial pooling/sub-sampling.

layer with 4x4 down-sampling is denoted: P 4×4
A .

Max-Pooling and Subsampling Layer - PM : building lo-
cal invariance to shift can be performed with any symmetric
pooling operation. The max-pooling module is similar to
the average pooling, except that the average operation is re-
placed by a max operation. In our experiments, the pooling
windows were non-overlapping. A max-pooling layer with
4x4 down-sampling is denoted P 4×4

M .

2.1. Combining Modules into a Hierarchy
Different architectures can be produced by cascading the

above-mentioned modules in various ways. An architec-
ture is composed of one or two stages of feature extraction,
each of which is formed by cascading a filtering layer with
different combinations of rectification, normalization, and
pooling. Recognition architectures are composed of one or
two such stages, followed by a classifier, generally a multi-
nomial logistic regression.
FCSG − PA This is the basic building block of tra-
ditional convolutional networks, alternating tanh-squashed
filter banks with average down-sampling layers [14, 10].
A complete convolutional network would have several se-
quences of “FCSG - PA” followed by by a linear classifier.
FCSG − Rabs − PA The tanh-squashed filter bank is
followed by an absolute value non-linearity, and by an av-
erage down-sampling layer.
FCSG − Rabs − N − PA The tanh-squashed filter bank
is followed by an absolute value non-linearity, by a lo-
cal contrast normalization layer and by an average down-
sampling layer.
FCSG − PM This is also a typical building block of con-
volutional networks, as well as the basis of the HMAX and
other architectures [28, 25], which alternate tanh-squashed
filter banks with max-pooling layers.

3. Training Protocol
Given a particular architecture, a number of training pro-

tocols have been considered and tested. Each protocol is
identified by a letter R,U,R+, or U+. A single letter (e.g.
R) indicates an architecture with a single stage of feature
extraction, followed by a classifier, while a double letter
(e.g. RR) indicates an architecture with two stages of fea-
ture extraction followed by a classifier:
Random Features and Supervised Classifier - R and
RR: The filters in the feature extraction stages are set to
random values and kept fixed (no feature learning takes
place), and the classifier stage is trained in supervised mode.

-  xi is the ith channel of input
-  kij is the convolution kernel

-  gj is a learned scaling factor

-  gj is the hidden layer

Jarret et al. 2009
can add bias

Discrete Convolution
•  The convolution of an image x with a kernel k is computed as
follows:

•  Example:

(x ⇤ k)ij =
X

pq

xi+p,j+qkr�p,r�q

Discrete Convolution
•  The convolution of an image x with a kernel k is computed as
follows:

•  Example:

(x ⇤ k)ij =
X

pq

xi+p,j+qkr�p,r�q

k̃ = k with rows and columns flipped

Discrete Convolution
•  The convolution of an image x with a kernel k is computed as
follows:

•  Example:

(x ⇤ k)ij =
X

pq

xi+p,j+qkr�p,r�q

1 x 0 + 0.5 x 80 + 0.25 x 20 + 0 x 40 = 45

Discrete Convolution
•  The convolution of an image x with a kernel k is computed as
follows:

•  Example:

(x ⇤ k)ij =
X

pq

xi+p,j+qkr�p,r�q

1 x 80 + 0.5 x 40 + 0.25 x 40 + 0 x 0 = 110

Discrete Convolution
•  The convolution of an image x with a kernel k is computed as
follows:

•  Example:

(x ⇤ k)ij =
X

pq

xi+p,j+qkr�p,r�q

1 x 20 + 0.5 x 40 + 0.25 x 0 + 0 x 0 = 40

Discrete Convolution
•  The convolution of an image x with a kernel k is computed as
follows:

•  Example:

(x ⇤ k)ij =
X

pq

xi+p,j+qkr�p,r�q

1 x 40 + 0.5 x 0 + 0.25 x 0 + 0 x 40 = 40

Discrete Convolution
•  Pre-activations from channel xi into feature map yj can be
computed by:

Ø  getting the convolution kernel where kij =Wij from the
connection matrix Wij

Ø  applying the convolution xi * kij

~

•  This is equivalent to computing the discrete correlation
of xi with Wij

Example
•  Illustration:

x ⇤ kij , where Wij = W̃ij

Example

●  Calcul%d’une%couche%«%simple%cell%»%
  première%étape%:%calcul%de%la%convolu7on%%

IFT%615% Hugo%Larochelle% 47%

%%%%%
%

%%%%%
%

X

W

�X W

0% 0.5%

0.5% 0%

0% 128% 128% 0%

0% 128% 128% 0%

0% 255% 0% 0%

255% 0% 0% 0%

0% 0% 255% 0% 0%

0% 0% 255% 0% 0%

0% 0% 255% 0% 0%

0% 255% 0% 0% 0%

255% 0% 0% 0% 0%

connexions%
vers%les%neurones%
cachés%

0% 0.5%

0.5% 0%

couche)d’entrée) couche)«)simple)cell)»)

Example
•  With a non-linearity, we get a detector of a feature at any
position in the image:

x ⇤ kij , where Wij = W̃ij

Example

●  Calcul%d’une%couche%«%simple%cell%»%
  première%étape%:%calcul%de%la%convolu7on%%

IFT%615% Hugo%Larochelle% 47%

%%%%%
%

%%%%%
%

X

W

�X W

0% 0.5%

0.5% 0%

0% 128% 128% 0%

0% 128% 128% 0%

0% 255% 0% 0%

255% 0% 0% 0%

0% 0% 255% 0% 0%

0% 0% 255% 0% 0%

0% 0% 255% 0% 0%

0% 255% 0% 0% 0%

255% 0% 0% 0% 0%

connexions%
vers%les%neurones%
cachés%

0% 0.5%

0.5% 0%

couche)d’entrée) couche)«)simple)cell)»)

Example
•  Can use ‘‘zero padding’’ to allow going over the borders (*)

Example

Multiple Feature Maps
•  Example: 200x200 image, 100 filters,
filter size 10x10, 10K parameters

Computer Vision
•  Our goal is to design neural networks that are specifically
adapted for such problems

Ø  Must deal with very high-dimensional inputs: 150 x 150 pixels =

22500 inputs, or 3 x 22500 if RGB pixels

Ø  Can exploit the 2D topology of pixels (or 3D for video data)

Ø  Can build in invariance to certain variations: translation,

illumination, etc.

•  Convolutional networks leverage these ideas

Ø  Local connectivity

Ø  Parameter sharing

Ø  Convolution

Ø  Pooling / subsampling hidden units

Pooling
•  Pool hidden units in same neighborhood

Ø  pooling is performed in non-overlapping neighborhoods
(subsampling)

-  xi is the ith channel of input
-  xi,j,k is value of the ith feature

map at position j,k
-  p is vertical index in local

neighborhood
-  q is horizontal index in local

neighborhood
-  yijk is pooled / subsampled

layer

Jarret et al. 2009

Computer vision

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 8, 2012

Abstract

Math for my slides “Computer vision”.

• H X ⇤

•
yijk = max

p,q
xi,j+p,k+q

•
yijk =

1

M

X

p,q

xi,j+p,k+q

1

Pooling
•  Pool hidden units in same neighborhood

Ø  an alternative to ‘‘max’’ pooling is ‘‘average’’ pooling

-  xi is the ith channel of input
-  xi,j,k is value of the ith feature

map at position j,k
-  p is vertical index in local

neighborhood
-  q is horizontal index in local

neighborhood
-  yijk is pooled / subsampled

layer
-  m is the neighborhood

height/width Jarret et al. 2009

Computer vision

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 8, 2012

Abstract

Math for my slides “Computer vision”.

• H X ⇤

•
yijk = max

p,q
xi,j+p,k+q

•
yijk =

1

m2

X

p,q

xi,j+p,k+q

• vijk = xijk �
P

ipq wpqxi,j+p,k+q

• yijk = vijk/max(c,�jk)

• �jk = (
P

ipq wpqv2i,j+p,k+q)
1/2

1

Example: Pooling
•  Illustration of pooling/subsampling operation

•  Why pooling?

Ø  Introduces invariance to local translations

Ø  Reduces the number of hidden units in hidden layer

Example

●  Calcul%d’une%couche%«%complex%cell%»%
  maximum%dans%plusieurs%segments%

IFT%615% Hugo%Larochelle% 49%

%%%%%
%

%%%%%
%

�X W

0.19% 0.19%

0.75% 0.02%

couche)«)simple)cell)»)

0.02% 0.19% 0.19% 0.02%

0.02% 0.19% 0.19% 0.02%

0.02% 0.75% 0.02% 0.02%

0.75% 0.02% 0.02% 0.02%

Logis6c(%(%%%%%%%%%%%%%n%200%)%/%50%)%
couche)«)complex)cell)»)

max% max%

max%max%

Example: Pooling

Ø  can we make the detection robust
to the exact location of the eye?

Example: Pooling

Ø  By “pooling” (e.g., taking max) filter
responses at different locations we
gain robustness to the exact spatial
location of features.

Translation Invariance
•  Illustration of local translation invariance

Ø  both images result in the same feature map after pooling/

subsampling

Convolutional Network
•  Convolutional neural network alternates between the
convolutional and pooling layers

From Yann LeCun’s slides

•  For classification: Output layer is a regular, fully connected layer
with softmax non-linearity

Ø  Output provides an estimate of the conditional probability of each

class

•  The network is trained by stochastic gradient descent

Ø  Backpropagation is used similarly as in a fully connected network

Ø  We have seen how to pass gradients through element-wise

activation function

Ø  We also need to pass gradients through the convolution operation

and the pooling operation

Convolutional Network

•  Let be the loss function

Gradient of Convolutional Layer
l

Ø  For max pooling operation , the
gradient for xijk is

 where p’, q’ = argmax xi,j+p,k+q

Computer vision

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 8, 2012

Abstract

Math for my slides “Computer vision”.

• H X ⇤

•
yijk = max

p,q
xi,j+p,k+q

•
yijk =

1

M

X

p,q

xi,j+p,k+q

1

rxijk l = 0, except for rxi,j+p0,k+q0 l = ryijk l

Ø  In other words, only the ‘‘winning’’ units in layer x get the gradient
from the pooled layer

Ø  For the average operation , the
gradient for xijk is

 where upsample inverts subsampling

Computer vision

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 8, 2012

Abstract

Math for my slides “Computer vision”.

• H X ⇤

•
yijk = max

p,q
xi,j+p,k+q

•
yijk =

1

m2

X

p,q

xi,j+p,k+q

• vijk = xijk �
P

ipq wpqxi,j+p,k+q

• yijk = vijk/max(c,�jk)

• �jk = (
P

ipq wpqv2i,j+p,k+q)
1/2

1

rxl =
1

m2
upsample(ryl)

Convolutional Network
•  Convolutional neural network alternates between the
convolutional and pooling layers

•  Need to introduce other operations that can improve object
recognition.

Rectification
•  Rectification layer: yijk = |xijk|

Ø  introduces invariance to the sign of the
unit in the previous layer

Ø  for instance, loss of information of
whether an edge is
black-to-white or white-to-black

Filter Bank Layer - FCSG: the input of a filter bank
layer is a 3D array with n1 2D feature maps of size n2×n3.
Each component is denoted xijk, and each feature map is
denoted xi. The output is also a 3D array, y composed of
m1 feature maps of size m2 ×m3. A filter in the filter bank
kij has size l1 × l2 and connects input feature map xi to
output feature map yj . The module computes:

yj = gj tanh(
∑

i

kij ∗ xi) (1)

where tanh is the hyperbolic tangent non-linearity, ∗ is the
2D discrete convolution operator and gj is a trainable scalar
coefficient. By taking into account the borders effect, we
have m1 = n1− l1 +1, and m2 = n2− l2 +1. This layer is
denoted by FCSG because it is composed of a set of convo-
lution filters (C), a sigmoid/tanh non-linearity (S), and gain
coefficients (G). In the following, superscripts are used to
denote the size of the filters. For instance, a filter bank layer
with 64 filters of size 9x9, is denoted as: 64F 9×9

CSG.
Rectification Layer - Rabs: This module simply applies
the absolute value function to all the components of its in-
put: yijk = |xijk|. Several rectifying non-linearities were
tried, including the positive part, and produced similar re-
sults.
Local Contrast Normalization Layer - N : This module
performs local subtractive and divisive normalizations, en-
forcing a sort of local competition between adjacent fea-
tures in a feature map, and between features at the same
spatial location in different feature maps. The subtrac-
tive normalization operation for a given site xijk com-
putes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q, where wpq is

a Gaussian weighting window (of size 9x9 in our exper-
iments) normalized so that

∑
ipq wpq = 1. The divisive

normalization computes yijk = vijk/max(c,σjk) where
σjk = (

∑
ipq wpq.v2

i,j+p,k+q)
1/2. For each sample, the

constant c is set to the mean(σjk) in the experiments. The
denominator is the weighted standard deviation of all fea-
tures over a spatial neighborhood. The local contrast nor-
malization layer is inspired by computational neuroscience
models [24, 20].
Average Pooling and Subsampling Layer - PA: The pur-
pose of this layer is to build robustness to small distor-
tions, playing the same role as the complex cells in mod-
els of visual perception. Each output value is yijk =∑

pq wpq.xi,j+p,k+q, where wpq is a uniform weighting
window (“boxcar filter”). Each output feature map is then
subsampled spatially by a factor S horizontally and verti-
cally. In this work, we do not consider pooling over fea-
ture types, but only over the spatial dimensions. Therefore,
the numbers of input and output feature maps are identical,
while the spatial resolution is decreased. Disregarding the
border effects in the boxcar averaging, the spatial resolution
is decreased by the down-sampling ratio S in both direc-
tions, denoted by a superscript, so that, an average pooling

Figure 1. A example of feature extraction stage of the type FCSG−

Rabs − N − PA. An input image (or a feature map) is passed
through a non-linear filterbank, followed by rectification, local

contrast normalization and spatial pooling/sub-sampling.

layer with 4x4 down-sampling is denoted: P 4×4
A .

Max-Pooling and Subsampling Layer - PM : building lo-
cal invariance to shift can be performed with any symmetric
pooling operation. The max-pooling module is similar to
the average pooling, except that the average operation is re-
placed by a max operation. In our experiments, the pooling
windows were non-overlapping. A max-pooling layer with
4x4 down-sampling is denoted P 4×4

M .

2.1. Combining Modules into a Hierarchy
Different architectures can be produced by cascading the

above-mentioned modules in various ways. An architec-
ture is composed of one or two stages of feature extraction,
each of which is formed by cascading a filtering layer with
different combinations of rectification, normalization, and
pooling. Recognition architectures are composed of one or
two such stages, followed by a classifier, generally a multi-
nomial logistic regression.
FCSG − PA This is the basic building block of tra-
ditional convolutional networks, alternating tanh-squashed
filter banks with average down-sampling layers [14, 10].
A complete convolutional network would have several se-
quences of “FCSG - PA” followed by by a linear classifier.
FCSG − Rabs − PA The tanh-squashed filter bank is
followed by an absolute value non-linearity, and by an av-
erage down-sampling layer.
FCSG − Rabs − N − PA The tanh-squashed filter bank
is followed by an absolute value non-linearity, by a lo-
cal contrast normalization layer and by an average down-
sampling layer.
FCSG − PM This is also a typical building block of con-
volutional networks, as well as the basis of the HMAX and
other architectures [28, 25], which alternate tanh-squashed
filter banks with max-pooling layers.

3. Training Protocol
Given a particular architecture, a number of training pro-

tocols have been considered and tested. Each protocol is
identified by a letter R,U,R+, or U+. A single letter (e.g.
R) indicates an architecture with a single stage of feature
extraction, followed by a classifier, while a double letter
(e.g. RR) indicates an architecture with two stages of fea-
ture extraction followed by a classifier:
Random Features and Supervised Classifier - R and
RR: The filters in the feature extraction stages are set to
random values and kept fixed (no feature learning takes
place), and the classifier stage is trained in supervised mode.

Local Contrast Normalization
•  Perform local contrast normalization

Ø  reduces unit’s activation if neighbors are also active
Ø  creates competition between feature maps
Ø  scales activations at each layer better for learning

Computer vision

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 8, 2012

Abstract

Math for my slides “Computer vision”.

• H X ⇤

•
yijk = max

p,q
xi,j+p,k+q

•
yijk =

1

M

X

p,q

xi,j+p,k+q

• vijk = xijk �
P

ipq wpqxi,j+p,k+q

• yijk = vijk/max(c,�jk)

• �jk = (
P

ipq wpqv2i,j+p,k+q)
1/2

1

Computer vision

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 8, 2012

Abstract

Math for my slides “Computer vision”.

• H X ⇤

•
yijk = max

p,q
xi,j+p,k+q

•
yijk =

1

M

X

p,q

xi,j+p,k+q

• vijk = xijk �
P

ipq wpqxi,j+p,k+q

• yijk = vijk/max(c,�jk)

• �jk = (
P

ipq wpqv2i,j+p,k+q)
1/2

1

Local average

Local stdev

Filter Bank Layer - FCSG: the input of a filter bank
layer is a 3D array with n1 2D feature maps of size n2×n3.
Each component is denoted xijk, and each feature map is
denoted xi. The output is also a 3D array, y composed of
m1 feature maps of size m2 ×m3. A filter in the filter bank
kij has size l1 × l2 and connects input feature map xi to
output feature map yj . The module computes:

yj = gj tanh(
∑

i

kij ∗ xi) (1)

where tanh is the hyperbolic tangent non-linearity, ∗ is the
2D discrete convolution operator and gj is a trainable scalar
coefficient. By taking into account the borders effect, we
have m1 = n1− l1 +1, and m2 = n2− l2 +1. This layer is
denoted by FCSG because it is composed of a set of convo-
lution filters (C), a sigmoid/tanh non-linearity (S), and gain
coefficients (G). In the following, superscripts are used to
denote the size of the filters. For instance, a filter bank layer
with 64 filters of size 9x9, is denoted as: 64F 9×9

CSG.
Rectification Layer - Rabs: This module simply applies
the absolute value function to all the components of its in-
put: yijk = |xijk|. Several rectifying non-linearities were
tried, including the positive part, and produced similar re-
sults.
Local Contrast Normalization Layer - N : This module
performs local subtractive and divisive normalizations, en-
forcing a sort of local competition between adjacent fea-
tures in a feature map, and between features at the same
spatial location in different feature maps. The subtrac-
tive normalization operation for a given site xijk com-
putes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q, where wpq is

a Gaussian weighting window (of size 9x9 in our exper-
iments) normalized so that

∑
ipq wpq = 1. The divisive

normalization computes yijk = vijk/max(c,σjk) where
σjk = (

∑
ipq wpq.v2

i,j+p,k+q)
1/2. For each sample, the

constant c is set to the mean(σjk) in the experiments. The
denominator is the weighted standard deviation of all fea-
tures over a spatial neighborhood. The local contrast nor-
malization layer is inspired by computational neuroscience
models [24, 20].
Average Pooling and Subsampling Layer - PA: The pur-
pose of this layer is to build robustness to small distor-
tions, playing the same role as the complex cells in mod-
els of visual perception. Each output value is yijk =∑

pq wpq.xi,j+p,k+q, where wpq is a uniform weighting
window (“boxcar filter”). Each output feature map is then
subsampled spatially by a factor S horizontally and verti-
cally. In this work, we do not consider pooling over fea-
ture types, but only over the spatial dimensions. Therefore,
the numbers of input and output feature maps are identical,
while the spatial resolution is decreased. Disregarding the
border effects in the boxcar averaging, the spatial resolution
is decreased by the down-sampling ratio S in both direc-
tions, denoted by a superscript, so that, an average pooling

Figure 1. A example of feature extraction stage of the type FCSG−

Rabs − N − PA. An input image (or a feature map) is passed
through a non-linear filterbank, followed by rectification, local

contrast normalization and spatial pooling/sub-sampling.

layer with 4x4 down-sampling is denoted: P 4×4
A .

Max-Pooling and Subsampling Layer - PM : building lo-
cal invariance to shift can be performed with any symmetric
pooling operation. The max-pooling module is similar to
the average pooling, except that the average operation is re-
placed by a max operation. In our experiments, the pooling
windows were non-overlapping. A max-pooling layer with
4x4 down-sampling is denoted P 4×4

M .

2.1. Combining Modules into a Hierarchy
Different architectures can be produced by cascading the

above-mentioned modules in various ways. An architec-
ture is composed of one or two stages of feature extraction,
each of which is formed by cascading a filtering layer with
different combinations of rectification, normalization, and
pooling. Recognition architectures are composed of one or
two such stages, followed by a classifier, generally a multi-
nomial logistic regression.
FCSG − PA This is the basic building block of tra-
ditional convolutional networks, alternating tanh-squashed
filter banks with average down-sampling layers [14, 10].
A complete convolutional network would have several se-
quences of “FCSG - PA” followed by by a linear classifier.
FCSG − Rabs − PA The tanh-squashed filter bank is
followed by an absolute value non-linearity, and by an av-
erage down-sampling layer.
FCSG − Rabs − N − PA The tanh-squashed filter bank
is followed by an absolute value non-linearity, by a lo-
cal contrast normalization layer and by an average down-
sampling layer.
FCSG − PM This is also a typical building block of con-
volutional networks, as well as the basis of the HMAX and
other architectures [28, 25], which alternate tanh-squashed
filter banks with max-pooling layers.

3. Training Protocol
Given a particular architecture, a number of training pro-

tocols have been considered and tested. Each protocol is
identified by a letter R,U,R+, or U+. A single letter (e.g.
R) indicates an architecture with a single stage of feature
extraction, followed by a classifier, while a double letter
(e.g. RR) indicates an architecture with two stages of fea-
ture extraction followed by a classifier:
Random Features and Supervised Classifier - R and
RR: The filters in the feature extraction stages are set to
random values and kept fixed (no feature learning takes
place), and the classifier stage is trained in supervised mode.

where c is a small constant to prevent division by 0

Computer vision

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 8, 2012

Abstract

Math for my slides “Computer vision”.

• H X ⇤

•
yijk = max

p,q
xi,j+p,k+q

•
yijk =

1

M

X

p,q

xi,j+p,k+q

• vijk = xijk �
P

ipq wpqxi,j+p,k+q

• yijk = vijk/max(c,�jk)

• �jk = (
P

ipq wpqv2i,j+p,k+q)
1/2

1

X

pq

wpq = 1

Local Contrast Normalization
•  Perform local contrast normalization

 Feature Maps
 Feature Maps after
Contrast Normalization

Ø  Local mean=0, Local std. = 1, “Local” is 7x7 Gaussian

Convolutional Network
•  These operations are inserted after the convolutions and before
the pooling

Filter Bank Layer - FCSG: the input of a filter bank
layer is a 3D array with n1 2D feature maps of size n2×n3.
Each component is denoted xijk, and each feature map is
denoted xi. The output is also a 3D array, y composed of
m1 feature maps of size m2 ×m3. A filter in the filter bank
kij has size l1 × l2 and connects input feature map xi to
output feature map yj . The module computes:

yj = gj tanh(
∑

i

kij ∗ xi) (1)

where tanh is the hyperbolic tangent non-linearity, ∗ is the
2D discrete convolution operator and gj is a trainable scalar
coefficient. By taking into account the borders effect, we
have m1 = n1− l1 +1, and m2 = n2− l2 +1. This layer is
denoted by FCSG because it is composed of a set of convo-
lution filters (C), a sigmoid/tanh non-linearity (S), and gain
coefficients (G). In the following, superscripts are used to
denote the size of the filters. For instance, a filter bank layer
with 64 filters of size 9x9, is denoted as: 64F 9×9

CSG.
Rectification Layer - Rabs: This module simply applies
the absolute value function to all the components of its in-
put: yijk = |xijk|. Several rectifying non-linearities were
tried, including the positive part, and produced similar re-
sults.
Local Contrast Normalization Layer - N : This module
performs local subtractive and divisive normalizations, en-
forcing a sort of local competition between adjacent fea-
tures in a feature map, and between features at the same
spatial location in different feature maps. The subtrac-
tive normalization operation for a given site xijk com-
putes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q, where wpq is

a Gaussian weighting window (of size 9x9 in our exper-
iments) normalized so that

∑
ipq wpq = 1. The divisive

normalization computes yijk = vijk/max(c,σjk) where
σjk = (

∑
ipq wpq.v2

i,j+p,k+q)
1/2. For each sample, the

constant c is set to the mean(σjk) in the experiments. The
denominator is the weighted standard deviation of all fea-
tures over a spatial neighborhood. The local contrast nor-
malization layer is inspired by computational neuroscience
models [24, 20].
Average Pooling and Subsampling Layer - PA: The pur-
pose of this layer is to build robustness to small distor-
tions, playing the same role as the complex cells in mod-
els of visual perception. Each output value is yijk =∑

pq wpq.xi,j+p,k+q, where wpq is a uniform weighting
window (“boxcar filter”). Each output feature map is then
subsampled spatially by a factor S horizontally and verti-
cally. In this work, we do not consider pooling over fea-
ture types, but only over the spatial dimensions. Therefore,
the numbers of input and output feature maps are identical,
while the spatial resolution is decreased. Disregarding the
border effects in the boxcar averaging, the spatial resolution
is decreased by the down-sampling ratio S in both direc-
tions, denoted by a superscript, so that, an average pooling

Figure 1. A example of feature extraction stage of the type FCSG−

Rabs − N − PA. An input image (or a feature map) is passed
through a non-linear filterbank, followed by rectification, local

contrast normalization and spatial pooling/sub-sampling.

layer with 4x4 down-sampling is denoted: P 4×4
A .

Max-Pooling and Subsampling Layer - PM : building lo-
cal invariance to shift can be performed with any symmetric
pooling operation. The max-pooling module is similar to
the average pooling, except that the average operation is re-
placed by a max operation. In our experiments, the pooling
windows were non-overlapping. A max-pooling layer with
4x4 down-sampling is denoted P 4×4

M .

2.1. Combining Modules into a Hierarchy
Different architectures can be produced by cascading the

above-mentioned modules in various ways. An architec-
ture is composed of one or two stages of feature extraction,
each of which is formed by cascading a filtering layer with
different combinations of rectification, normalization, and
pooling. Recognition architectures are composed of one or
two such stages, followed by a classifier, generally a multi-
nomial logistic regression.
FCSG − PA This is the basic building block of tra-
ditional convolutional networks, alternating tanh-squashed
filter banks with average down-sampling layers [14, 10].
A complete convolutional network would have several se-
quences of “FCSG - PA” followed by by a linear classifier.
FCSG − Rabs − PA The tanh-squashed filter bank is
followed by an absolute value non-linearity, and by an av-
erage down-sampling layer.
FCSG − Rabs − N − PA The tanh-squashed filter bank
is followed by an absolute value non-linearity, by a lo-
cal contrast normalization layer and by an average down-
sampling layer.
FCSG − PM This is also a typical building block of con-
volutional networks, as well as the basis of the HMAX and
other architectures [28, 25], which alternate tanh-squashed
filter banks with max-pooling layers.

3. Training Protocol
Given a particular architecture, a number of training pro-

tocols have been considered and tested. Each protocol is
identified by a letter R,U,R+, or U+. A single letter (e.g.
R) indicates an architecture with a single stage of feature
extraction, followed by a classifier, while a double letter
(e.g. RR) indicates an architecture with two stages of fea-
ture extraction followed by a classifier:
Random Features and Supervised Classifier - R and
RR: The filters in the feature extraction stages are set to
random values and kept fixed (no feature learning takes
place), and the classifier stage is trained in supervised mode.

Jarret et al. 2009

 K. Kavukcuoglu

Remember Batch Normalization

Learned linear transformation to adapt to non-linear
activation function (𝛾 and β are trained) and β are trained)

